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In order that it be correctly characterized, irreversible turbulent mixing in stratified
fluids must distinguish between adiabatic ‘stirring’ and diabatic ‘mixing’. Such a
distinction has been formalized through the definition of a diapycnal diffusivity,
Kρ (Winters & D’Asaro, J. Fluid Mech., vol. 317, 1996, pp. 179–193) and an
appropriate mixing efficiency, E (Caulfield & Peltier, J. Fluid Mech., vol. 413, 2000,
pp. 1–47). Equivalent attention has not been paid to the definitions of a corresponding
momentum diffusivity Km and hence an appropriately defined turbulent Prandtl
number Prt = Km/Kρ . In this paper, the diascalar framework of Winters & D’Asaro
(1996) is first reformulated to obtain an ‘Osborn-like’ formula in which the correct
definition of irreversible mixing efficiency E is shown to replace the flux Richardson
number which Osborn (J. Phys. Oceanogr., vol. 10, 1980, pp. 83–89) assumed
to characterize this efficiency. We advocate the use of this revised representation
for diapycnal diffusivity since the proposed reformulation effectively removes the
simplifying assumptions on which the original Osborn formula was based. We
similarly propose correspondingly reasonable definitions for Km and Prt by eliminating
the reversible component of the momentum production term. To explore implications
of the reformulations for both diapycnal and momentum diffusivity we employ an
extensive series of direct numerical simulations (DNS) to investigate the properties of
the shear-induced density-stratified turbulence that is engendered through the breaking
of a freely evolving Kelvin–Helmholtz wave. The DNS results based on the proposed
reformulation of Kρ are compared with available estimations due to the mixing length
model, as well as both the Osborn–Cox and the Osborn models. Estimates based
upon the Osborn–Cox formulation are shown to provide the closest approximation to
the diapycnal diffusivity delivered by the exact representation. Through compilation
of the complete set of DNS results we explore the characteristic dependence of Kρ on
the buoyancy Reynolds number Reb as originally investigated by Shih et al. (J. Fluid
Mech., vol. 525, 2005, pp. 193–214) in their idealized study of homogeneous stratified
and sheared turbulence, and show that the validity of their results is only further
reinforced through analysis of the turbulence produced in the more geophysically
relevant Kelvin–Helmholtz wave life-cycle ansatz. In contrast to the results described
by Shih et al. (2005) however, we show that, besides Reb, a vertically averaged
measure of the gradient Richardson number Rib may equivalently characterize the
turbulent mixing at high Reb. Based on the dominant driving processes involved in
irreversible mixing, we categorize the intermediate (i.e. Reb = O(101–102)) and high

† Email address for correspondence: h.salehipour@utoronto.ca

http://orcid.org/0000-0002-8378-0799
mailto:h.salehipour@utoronto.ca


Diapycnal diffusivity, mixing efficiency and turbulent Prandtl number 465

(i.e. Reb > O(102)) range of Reb as ‘buoyancy-dominated’ and ‘shear-dominated’
mixing regimes, which together define a transition value of Rib ∼ 0.2. Mixing
efficiency varies non-monotonically with both Reb and Rib, with its maximum (on the
order of 0.2–0.3) occurring in the ‘buoyancy-dominated’ regime. Unlike Kρ which is
very sensitive to the correct choice of E (i.e. Kρ ∝ E /(1 − E )), we show that Km
is almost insensitive to the choice of E (i.e. Km ∝ 1/(1 − E )) so long as E is not
close to unity, which implies Km ≈ RibReb for the entire range of Reb. The turbulent
Prandtl number is consequently shown to decrease monotonically with Reb and may
be (to first order) simply approximated by Reb itself. Assuming Prt = 1, or Prt = 10
(as is common in large-scale numerical models of the ocean general circulation), is
also suggested to be a questionable assumption.

Key words: mixing and dispersion, ocean circulation, stratified turbulence

1. Introduction
The idea of a turbulent diapycnal diffusivity, Kρ , is often introduced to represent the

irreversible flux of mass across isopycnal surfaces in a density-stratified fluid which
experiences irreversible turbulent mixing. It may be defined most generally as the ratio
of a scalar flux to its vertical gradient as:

Kρ =− flux
gradient

. (1.1)

As noted by Winters & D’Asaro (1996) and Barry et al. (2001), the fundamental
difference between models of Kρ arises due to the different definitions adopted for
both the scalar flux and its associated gradient in (1.1). At present, the representations
proposed by Osborn & Cox (1972) and Osborn (1980) are still widely employed in the
parameterization of small-scale diapycnal mixing in large-scale numerical models of
the ocean general circulation (e.g. Danabasoglu et al. 2012) and also to infer Kρ from
oceanographic experimental measurements (e.g. Waterhouse et al. 2014). Given the
approximate nature of these models (Davis 1994; Mashayek & Peltier 2013) and the
fact that they do not distinguish between reversible ‘stirring’ and irreversible ‘mixing’
(as discussed in Winters et al. 1995 and Caulfield & Peltier 2000), an accurate
definition for Kρ using an isoscalar coordinate system was proposed by Winters &
D’Asaro (1996) (hereinafter referred to as WD96). One goal of the present work is to
analytically recast their definition of Kρ into a more familiar ‘Osborn-like’ expression
and to clarify its dependence on an accurately defined irreversible mixing efficiency,
E , and buoyancy Reynolds number Reb.

Mixing efficiency, E , may be defined as the ‘useful’ expenditure of total mechanical
energy that is invested in irreversible mixing (Caulfield & Peltier 2000), which for
a Boussinesq flow leads to a monotonic increase of a background potential energy
(BPE) of the system (Winters et al. 1995; Tailleux 2009) that is to be distinguished
from the available potential energy that can be converted into kinetic energy (Lorenz
1955). It has become common practice to assume a canonical value of 0.2 for an
assumed constant value of mixing efficiency, through which the diapycnal diffusivity
is estimated based on the approximate formulation of Osborn (1980). However, there
is continuing debate on the relevance of this value to the full range of accessible
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turbulent regimes in geophysical flows (Ivey, Winters & Koseff 2008). This issue has
therefore prompted the development of alternative expressions for scalar diffusivity
based on a variety of length scale arguments (e.g. see Ivey & Imberger 1991; Barry
et al. 2001; Shih et al. 2005) that may be employed to interpret the measurements of
turbulence related processes in environmental flows (Dunckley et al. 2012; Bluteau,
Jones & Ivey 2013; Bouffard & Boegman 2013). The modest reformulation of Kρ , to
be presented in what follows, is a direct mathematical consequence of the governing
Boussinesq equations and will lead us to advocate the use of an ‘Osborn-like’
formula with no limiting approximations, provided that a correct definition of E is
employed. Moreover, this reformulation will be shown to reinforce the importance
of the previously presented length scale arguments suggesting that Kρ should depend
strongly upon Reb.

The buoyancy Reynolds number, Reb (or as it is also sometimes referred to, the
turbulence intensity parameter), measures the extent of the inertial subrange that is
characterized by the ratio of the Ozmidov to the Kolmogorov length scales (to the
power 4/3) (e.g. see Smyth & Moum 2000b). This dimensionless parameter has
been suggested to be one of the two dynamically relevant parameters required for
the characterization of stratified turbulence (e.g. see Brethouwer et al. 2007 and Ivey
et al. 2008). The second parameter required for such characterization may be thought
to be the gradient Richardson number Rib (Linden 1979; Fernando 1991) which
characterizes the relative strengths of density stratification and velocity shear. These
two parameters are respectively defined as:

Reb = εk

νN2
, Rib = N2

S2
, (1.2a,b)

where εk is the viscous dissipation of kinetic energy (to be precisely defined in what
follows), ν is kinematic viscosity, N is the Brunt–Väisälä frequency and S is the
vertical shear. Here we employ a bulk measure of the gradient Richardson number in
which N2 and S2 are individually vertically averaged over the same appropriate length
scale.

In addition to Kρ , the momentum diffusivity (or eddy viscosity), Km, is also required
to characterize the subgrid-scale diffusion of momentum and it too must therefore be
parameterized in large-scale numerical models of geophysical flows (Klymak, Legg &
Pinkel 2010; Danabasoglu et al. 2012). A key parameter which measures the relative
importance of these two turbulent diffusivities is the turbulent Prandtl number Prt =
Km/Kρ . Venayagamoorthy & Stretch (2010) have recently studied the variations of Prt

in the special case of homogeneous sheared and stratified turbulence in which they
distinguished reversible from irreversible contributions to Km by drawing an analogy
to a formulation in the stationary turbulence limit (based on simplified energy and
scalar balance equations) and proposing a new formulation for Km for non-stationary
homogeneous stratified and sheared turbulent flows. A second primary goal in this
paper is to propose an expression for Prt applicable to any stratified Boussinesq flow
at sufficiently high Re.

Any useful parameterization of Kρ and Km (or Prt) should rely on a study which
not only isolates the signature of irreversible mixing on turbulent diffusivity, but also
properly identifies the aforementioned parametric dependences. In this regard, direct
numerical simulation (DNS) provides the ideal tool to analyse stratified turbulent
mixing events. Nonetheless, previous DNS efforts (e.g. Smyth, Moum & Caldwell
2001; Shih et al. 2005; Smyth, Nash & Moum 2005; Mashayek & Peltier 2013) have
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not consistently employed adequately precise definitions of these important quantities,
namely E , Kρ and Km (or Prt). Here, by use of the phrase ‘adequately precise’
we mean definitions that fully distinguish between the reversible and irreversible
contributions to the scalar and momentum flux related processes. Furthermore, aside
from the study by Shih et al. (2005) (hereinafter referred to as SKIF), who focused
on the special case of homogeneous sheared and stratified turbulence, to the best
of our knowledge there has been no other DNS study aimed at characterizing the
dependence of E , Kρ and Km on the dynamically relevant parameters of stratified
turbulence (e.g. Reb and Rib). In this paper, our intention is to begin to address
both these aspects of the stratified turbulence problem through the analysis of an
extensive series of three-dimensional DNS dataset of the much more geophysically
relevant case of inhomogeneously stratified and sheared turbulence that is generated
after a laminar two-dimensional Kelvin–Helmholtz (KH) wave ‘breaks’ at high initial
Reynolds numbers (to be denoted henceforth as the KH ansatz). Nonetheless, we
foresee a significant need for further numerical and experimental effort focusing
on stratified turbulence with a wider range of turbulent generation mechanisms in
order to fully establish the parametric dependences of these critical characteristics of
stratified turbulence.

The remainder of this paper consists of two distinct parts. In the first part in
§§ 2 and 3, we first review the available models that continue to be employed in
the estimation of Kρ and Km, following which we propose improved expressions
for the diapycnal diffusivity Kρ and eddy viscosity Km (and hence Prt) in stratified
Boussinesq turbulence. Arguments presented in § 2.3 essentially transform the problem
of parameterizing diapycnal diffusivity into the problem of correctly determining
irreversible mixing efficiency. The second part of this paper, in § 4, describes our
numerical methodology and provides the results of an extensive series of DNS
analyses of turbulence characteristics based on the KH ansatz. While the first part
of the paper relies solely upon the structure of the underlying Boussinesq equations
(and is therefore independent of flow configuration), the second part is specific to
our choice of model problem. Concluding remarks that follow from the analyses we
have performed are offered in § 5.

2. Scalar diffusivity and mixing efficiency
Our primary goal is to moderately build upon and to extend the previous work

of WD96 in order to derive a revised expression for diapycnal diffusivity. This
reformulation will lead to an expression of Osborn (1980) form, but one that
eliminates all the assumptions on which it was originally based, which should
therefore constitute a useful basis for improved parameterizations of diapycnal
diffusivity. In all that follows we will be providing non-dimensional representations
for various models of Kρ by normalizing them by the molecular diffusivity, κ ,
i.e. K̃ρ = Kρ/κ . This non-dimensionalization will prove useful for the purpose
of comparing Kρ for fluids characterized by different molecular Prandtl numbers.
Because the turbulent diffusivity is inevitably several orders of magnitude greater
than its molecular counterpart, this non-dimensional diffusivity would be expected to
reach high values of O(101–104), regardless of the calculation methodology.

2.1. Existing models of scalar diffusivity
We begin by reviewing four different methods of calculating Kρ , some of which are
most commonly employed in numerical and experimental studies. These methods
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include: (i) the Prandtl mixing length model denoted by Kml
ρ , (ii) the Osborn

formula, Kosb
ρ , (iii) the Osborn–Cox formula Kcox

ρ and finally (iv) the Winters–D’Asaro
formula, K∗ρ .

The Prandtl mixing length model is sometimes referred to as the ‘direct’ method of
calculating Kρ (Ivey et al. 2008; Bouffard & Boegman 2013). In fact, the historical
difficulties associated with measuring and interpreting the turbulent density flux ρ ′w′
has led to its ‘indirect’ inference from the simplified turbulent kinetic energy (TKE)
evolution equation and the balance equation for temperature variance, respectively in
the models proposed by Osborn (1980) and Osborn & Cox (1972). In DNS studies of
stratified sheared turbulence (e.g. see SKIF and Mashayek & Peltier 2013), because
this density flux can be directly computed, Kml

ρ derived on the basis of the mixing
length model is often considered to be the most accurate value for Kρ . However, the
fidelity of the mixing length model critically depends on whether the turbulent density
flux can be considered the appropriate ‘flux’ in (1.1). In fact, it was demonstrated
by WD96 that the ‘flux’ that should be employed in the calculation of Kρ is the
‘diapycnal flux’ φd, which includes only the irreversible and diffusive destruction
of small-scale density variance. Unlike the turbulent density flux, the diapycnal
flux may be precisely obtained by evoking the concept of adiabatic sorting, which
continuously rearranges the evolving three-dimensional instantaneous density field
into a background stably stratified density profile. This enables a clear distinction
to be made between the reversible and irreversible processes that are active in
flow evolution. Our proposed reformulation for Kρ to be presented in this paper
also accounts for this important distinction as it is simply a variation upon the
Winters–D’Asaro formulation.

2.1.1. Prandtl mixing length model
The concept of ‘mixing length’, as first introduced by Taylor (1915), is associated

with an average distance in the cross-stream direction that a fluid particle travels
before being mixed. The mixing length theory of Prandtl (1925) employs this concept
to relate the mean flow properties to the turbulent deviations from it. Thus, by
following this approach Kρ may be estimated in the simplest manner by the ratio of
the turbulent density flux to the vertical gradient of the mean density profile. Namely,
in non-dimensional form:

K̃ml
ρ =−

1
κ

〈ρ ′w′〉
〈dρ/dz〉 , (2.1)

in which the deviations from the horizontal mean are denoted by a prime (ρ ′ or w′)
and the overbar represents horizontal averaging, while 〈.〉 represents vertical averaging.
The choices for the ‘flux’ and ‘gradient’ terms in (1.1) should be clear for this model
from (2.1). As will be reviewed in what follows, the models proposed by Osborn
(1980) and Osborn & Cox (1972) are both based on the expression in (2.1), but in
these models the density flux is replaced by other flow characteristics.

2.1.2. Osborn model
Osborn (1980) simplified the TKE equation by assuming that the turbulence is

stationary in time and the flow is homogeneous in space, and on this basis derived
a three-way balance between the shear production of the background flow P, the
turbulent buoyancy flux B, and viscous dissipation εk as P=B+ εk. These terms are
defined respectively as:
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P=−
〈

du
dz

u′w′
〉
, (2.2)

B= g
ρ0
〈ρ ′w′〉, (2.3)

εk = 2ν〈sijsij〉, (2.4)

where sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the strain rate tensor. Note that εk is a positive-
definite quantity which represents the dissipation of kinetic energy at smallest scales
due to the finite molecular viscosity of the fluid.

Osborn (1980) further employed the definition of the flux Richardson number as
Rf =B/P, which in conjunction with the simplified balance equation resulted in B=
Rf /(1 − Rf )εk. In order to obtain an estimate for diapycnal diffusivity that could be
inferred on the basis of oceanographic measurements of turbulent dissipation, Osborn
also employed the Prandtl mixing length theory (2.1) and replaced the buoyancy flux
with Rf /(1− Rf )εk. The resulting expression for Kρ in our non-dimensional form can
be written as:

K̃osb
ρ = Pr

(
Rf

1− Rf

)
εk

νN2
= γPr Reb, (2.5)

in which Reb= εk/(νN2) is the buoyancy Reynolds number, where N=√g/ρ0〈dρ/dz〉
denotes the vertically averaged Brunt–Väisälä frequency and Pr= ν/κ is the molecular
Prandtl number.

For practical purposes and in order to close the above parameterization for Kρ ,
Osborn (1980) further proposed Rf 6 0.17 (or γ = Rf /(1 − Rf ) 6 0.2) based on the
theoretical work of Ellison (1957). Conventionally thereafter, a constant value of γ =
0.2 in (2.5) has been used as the ‘Osborn formula’ for both parameterizing diapycnal
mixing in large-scale general circulation models of the oceans (St. Laurent, Simmons
& Jayne 2002; Danabasoglu et al. 2012) and also for the purpose of inferring Kρ from
microstructure measurements (St. Laurent et al. 2012; Waterhouse et al. 2014).

2.1.3. Osborn–Cox model
The other widely used expression in oceanography for inferring scalar diffusivity

of temperature Kθ was proposed by Osborn & Cox (1972). Note that for temperature
stratified flows, as in the ocean thermocline for example, it is usually assumed that
Kθ = Kρ . This approximate model is based on a simplified balance equation for
temperature variance θ ′2 which assumes stationary homogeneous turbulence with
a temperature gradient only in the vertical direction (Gregg 1987). The key result
from the simplified balance equation is an approximate expression for θ ′w′ which is
employed in Osborn & Cox (1972) as the required ‘flux’ term in (1.1). The final
result is reproduced below in the non-dimensional form (Gregg 1987):

K̃cox
θ =

〈|∇θ ′|2〉
〈[dθ/dz]2〉 . (2.6)

It is worthwhile noting that the right-hand side of (2.6) is known as the ‘Cox
number’. Thus in this paper, due to our non-dimensionalization of scalar diffusivity,
K̃cox
θ may also be interpreted as the Cox number.
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2.1.4. Winters–D’Asaro model
The precise formulation for scalar diffusivity associated with the diabatic transfer of

fluid parcels across any isoscalar surface (termed ‘diascalar’ diffusivity) was proposed
by WD96, whose expression follows directly from the conservation equations under
the Boussinesq approximation. Their expression for diascalar diffusivity is reproduced
here in our non-dimensional form by taking the scalar field to represent the density
field (i.e. diapycnal diffusivity):

K̃∗ρ =
〈|∇ρ|2〉S∗
[dρ/dz∗]2 , (2.7)

in which the squared magnitude of the density gradient, |∇ρ|2, is averaged over an
adiabatically re-stratified surface S∗. Furthermore, in the reference state of minimum
potential energy, that is attainable through adiabatic rearrangement of fluid parcels, the
reference vertical position of an infinitesimal element at (x, t) with density ρ(x, t) is
defined as z∗(x, t) (Winters et al. 1995). One can also define a ‘diapycnal flux’ φd as:

φd(z, t)=−κ 〈|∇ρ|
2〉S∗

dρ/dz∗
, (2.8)

and infer the associated diapycnal diffusivity as K̃∗ρ =−〈φd〉/(κ〈dρ/dz∗〉). Using φd as
the required ‘flux’ in (1.1), enables one to correctly distinguish between the reversible
and irreversible contributions to diapycnal diffusivity, in clear contrast to all of the
previous models. However, the specific form of diapycnal flux as calculated by (2.8)
has not been directly employed (to the best of our knowledge) in the literature, most
probably due to the complications involved in evaluating the surface integral over an
isoscalar surface of the adiabatically sorted and temporally evolving density field. We
will return to this formulation in the next section.

2.2. Theoretical preliminaries
The governing conservation equations subjected to the Boussinesq approximation can
be written in dimensional form as:

Dui

Dt
=− 1

ρ0

∂p
∂xi
− g
ρ0
ρδi3 + ν ∂

2ui

∂x2
j
, (2.9)

∂ui

∂xi
= 0, (2.10)

Dρ
Dt
= κ ∂

2ρ

∂x2
j
, (2.11)

in which repeated indices imply summation (i, j = 1, 2, 3), g is gravitational
acceleration (directed downward in the vertical direction x3 ≡ z) and ρ0 is a constant
reference density.

The state of minimum potential energy is obtained after adiabatically ‘sorting’ the
three-dimensional density field into a vertical profile with a decreasing upward density
(i.e. the background density profile ρ∗(z, t)). The BPE, PB, corresponding to this
reference state may be defined by employing either of the following forms (Winters
et al. 1995; Caulfield & Peltier 2000):

PB = g
ρ0
〈ρ(x, t)z∗(x, t)〉 = g

ρ0
〈ρ∗(z, t)z〉, (2.12)
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in which again 〈f 〉 and f respectively denote vertical and horizontal averaging of a
general field f . Also note that PB denotes the averaged BPE per unit mass and is
therefore normalized by ρ0.

Winters et al. (1995) derived dPB/dt by taking the time derivative of (2.12) and
further by replacing ∂ρ/∂t from (2.11) (note that the volume average of the other
resulting term including ∂z∗/∂t is identically zero) to write:

d
dt

PB = g
ρ0V

∫
V

z∗(−u · ∇ρ + κ∇2ρ) dV. (2.13)

Furthermore, by applying integration by parts to each of the terms inside the volume
integral, the resulting evolution equation for BPE was shown to be reduced to:

d
dt

PB =Fadv +Fdiff +M +Dp, (2.14)

Fadv =− g
ρ0V

∮
S
ψu · n̂ dS, (2.15)

Fdiff = κg
ρ0V

∮
S

z∗∇ρ · n̂ dS, (2.16)

M +Dp = κg
ρ0V

∫
V
−dz∗

dρ
|∇ρ|2 dV, (2.17)

in which a supplementary field variable ψ has been introduced as ψ = ∫ ρz∗(ρ̂) dρ̂
(which yields ∇ψ = z∗∇ρ) in order to incorporate the implicit dependence of z∗ on ρ.
Also, the integration is carried out over the control volume V which encloses the entire
turbulent flow, bounded by its control surface S.

Notice that (2.14) only employs the Boussinesq approximation and includes no
further assumptions. Based on this expression for dPB/dt, the BPE may change due
either to surface fluxes across S or material changes within volume V . In addition,
if the system is not closed, the surface fluxes are non-zero and might include both
advective and diffusive processes, respectively denoted by Fadv and Fdiff . These
surface fluxes represent reversible processes that are sign-indefinite and could support
larger-scale stirring of the flow. On the other hand, the volume integral, denoted by
M + Dp, represents a diffusive destruction of small-scale density variance which
is positive definite by construction because the adiabatic sorting of the density field
ensures dz∗/dρ <0, implying that the small-scale processes involved in this destruction
lead to an increase in BPE.

For an incompressible Boussinesq fluid, the turbulent diapycnal mixing, M in
(2.14), represents the rate of irreversible energy conversion from internal energy into
BPE (Tailleux 2009), which turns out to be identical to the irreversible conversion of
available potential energy (or APE, defined as the difference between total potential
energy P and the BPE, i.e. PA=P −PB) into fluid internal energy, denoted by εp
(i.e. M = εp as discussed by Tailleux 2009). The laminar analogue of M is denoted
by Dp which characterizes the diffusive transfer of motionless fluid internal energy
into BPE. This distinction between the laminar and turbulent conversions of internal
energy into BPE is only important for low Reynolds number flows in which Dp
provides comparable contributions to M , while for high Reynolds number flows Dp
is truly negligible. Also note that for a laminar flow in its reference state of potential
energy where ∇ρ = dρ/dz and z∗ ≡ z, the turbulent diapycnal mixing would be zero
(i.e. M = 0) and therefore Dp follows from (2.17) as Dp = κg1ρA/(ρ0V) where
1ρ = ρmax − ρmin and A denotes a horizontal surface area of the laminar isopycnal
surface within the control volume V .
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2.3. A revised formulation of scalar diffusivity Kρ

Our goal in the remainder of this section is to relate the exact formulation of diascalar
diffusivity, proposed in WD96, to the definition of mixing efficiency proposed by
Caulfield & Peltier (2000), thereby obtaining a more useful expression for Kρ in
terms of irreversible mixing efficiency (to be precisely defined in what follows). For
this purpose, we should first note that for any high Reynolds number flow, Dp is
several orders of magnitude smaller than irreversible mixing M and thus (2.17) can
be written as:

M = κg
ρ0V

∫
V
−
(

dρ∗
dz

)−1

|∇ρ|2 dV, (2.18)

in which we have replaced dz∗/dρ by (dρ∗/dz)−1 which essentially follows from the
definitions of z∗ and ρ∗ as stated in the previous sections. In this regard it is important
to note that on a given isopycnal surface, the scalar field z∗(x, t) is invariant by
definition and therefore z∗ is a unique function of ρ such that z= z∗(ρ). Alternatively,
at a given reference height, the density field is invariant by definition and therefore ρ
is a unique function of z∗ such that ρ∗=ρ(z∗). These expressions imply that dz∗/dρ=
(dρ∗/dz)−1.

Because the volume integral in (2.18) is coordinate-independent, we choose dV in
(2.18) to represent the infinitesimal volume of fluid enclosed between two adiabatically
re-stratified isopycnal surfaces such that dV∗ = dS∗dn. Here dS∗ is the infinitesimal
surface area of an isopycnal surface and dn denotes its infinitesimal perpendicular
(i.e. diapycnal) distance from the adjacent isopycnal (see figure 1 of WD96 for a
depiction of dV∗, dS∗ and dn). Note that in the reference state of minimum BPE,
dn≡ dz where dz is the infinitesimal vertical distance. As a result, the volume integral
in (2.18) can be split into a surface integral and a line integral which may be rewritten
as:

κg
ρ0V

∫
V
−
(

dρ∗
dz

)−1

|∇ρ|2 dV = κg
ρ0V

∫
z

∫
S∗
−
(

dρ∗
dz

)−1

|∇ρ|2 dS∗ dz. (2.19)

Moreover, inasmuch as ρ∗ changes equally across an adiabatically re-stratified
isopycnal by construction, dρ∗/dz becomes constant, by definition, on dS∗ and thus
it may be taken outside of the above surface integral, which yields:

κg
ρ0V

∫
z
−
(

dρ∗
dz

)−1 [∫
S∗
|∇ρ|2 dS∗

]
dz= g

ρ0Lz

∫
z
−κ
(

dρ∗
dz

)−1

〈|∇ρ|2〉S∗︸ ︷︷ ︸
φd(z,t)

dz, (2.20)

where 〈.〉S∗ denotes averaging over an adiabatically re-stratified surface, identical to
the notation employed in (2.7). Furthermore, the resulting integrand in the above
expression is recognized as the diapycnal flux, φd, defined in (2.8).

The above equalities lead to a useful representation of irreversible mixing M as
being proportional to the vertically averaged rate of diapycnal flux 〈φd〉, or:

M = g
ρ0
〈φd(z, t)〉 =

(
E

1− E

)
εk. (2.21)

Note that the second equality in this equation follows from the definition of
instantaneous mixing efficiency as (Caulfield & Peltier 2000):

E = M

M + εk
. (2.22)



Diapycnal diffusivity, mixing efficiency and turbulent Prandtl number 473

It is also clear from (2.21) that, by definition, the irreversible mixing M represents the
flux of a force, while the averaged diapycnal flux 〈φd〉z may be considered a mass flux,
analogous to the connection between the buoyancy flux (g/ρ0)〈ρ ′w′〉 and the density
flux 〈ρ ′w′〉.

Based on (2.21), the irreversible diapycnal flux φd(z, t) can be represented entirely
in terms of E and εk. Following WD96, for calculating the exact diapycnal diffusivity
as discussed in § 2.1.4, we may also employ φd(z, t) as the required ‘flux’ in (1.1) and
divide it by the vertical gradient of the sorted background density profile ρ∗ (similar
to the discussion in connection with (2.7)). The resulting diffusivity is denoted by K∗ρ
and can be written in dimensionless form as:

K̃∗ρ =−
1
κ

〈φd(z, t)〉
〈dρ∗/dz〉 = Pr

(
E

1− E

)
εk

νN2∗
= Γ Pr Reb∗, (2.23)

in which N2
∗ is the buoyancy frequency calculated using the sorted density profile ρ∗

and thus the buoyancy Reynolds number Reb∗ is accordingly defined. Moreover, Γ =
E /(1− E ) should be considered as a flux coefficient, which may be compared to its
analogue γ = Rf /(1 − Rf ) in the Osborn formula (2.5) and is defined based on the
true mixing efficiency E not the flux Richardson number Rf .

It is very interesting and useful to compare the Osborn formula in (2.5) and our
newly derived expression for Kρ in (2.23). In fact, they resemble each other as they
both linearly depend on a buoyancy Reynolds number and a flux coefficient. Although
in (2.23) Reb∗ is defined using the sorted density profile, Reb and Reb∗ would be
almost identical (i.e. Reb∗≈Reb) if the vertically averaged values of dρ/dz and dρ∗/dz
are used in calculating N2 and N2

∗ respectively (e.g. see Smyth et al. 2001 for similar
definitions of averaged profiles in which they average numerator and denominator
individually). However, the major difference between these formulations concerns the
definitions of flux coefficients, namely γ = Rf /(1 − Rf ) in the Osborn formula and
Γ = E /(1 − E ) in ours. In other words, it is only by using the correct definition
of mixing efficiency E instead of the flux Richardson number Rf that one is able
to obtain a mathematically accurate calculation of Kρ . While the Osborn formula has
been derived using several important assumptions that are often criticized (e.g. see
Ivey et al. 2008; Mashayek & Peltier 2013), this new formula relies upon the validity
of the Boussinesq approximation to the governing equations and assumes only that
Re is high enough to yield M �Dp. This assumption is expected to be valid for all
geophysical flows. For these reasons, it is perhaps most appropriate to refer to (2.23)
as the ‘generalized Osborn’ formula.

It is also worthwhile mentioning that, as was noted in WD96, the Osborn–Cox
model in (2.6) is also very similar in form to the formulation proposed by Winters–
D’Asaro in (2.7). However, (2.7) is based on the gradient of the total scalar field
averaged over an isoscalar surface, while (2.6) is formulated based on the gradient
of scalar fluctuations averaged over the entire control volume (again the differences
between density gradients in their denominator become negligible if vertical averaging
is employed).

Effectively, the new formulation for Kρ in (2.23) might be considered as an
essential but otherwise slight modification to the Osborn formula itself. This
modification includes a correct definition of mixing efficiency as introduced in
(2.22) based on instantaneous irreversible mixing M (or diapycnal flux φd) which
isolates the irreversible small-scale diffusive processes that lead to the destruction
of density variance and hence result in diapycnal mixing. The assumption that the
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mixing efficiency may be represented in terms of Rf (i.e. employing the Osborn
formula), whether Rf is defined as Rf = B/P (Osborn 1980) or more generally as
Rf = B/(B + εk) (Ivey & Imberger 1991), would inevitably involve the fundamental
problem of improperly including the reversible processes in the calculation of
diapycnal diffusivity.

In addition, as (2.23) makes explicit, it is physically expected that the true diapycnal
diffusivity has to depend on the buoyancy Reynolds number, for the entire range of
accessible Reb. As explained earlier, (2.23) follows directly from the governing
conservation equations and is therefore independent of the physical process that
has generated the turbulence so long as that process conforms to the Boussinesq
approximations and occurs at sufficiently high Re. In fact, based on the length scale
argument of Ivey & Imberger (1991), it has been previously suggested that Kρ

might depend on Reb = εk/(νN2) (e.g. see Ivey et al. 2008). The evidence for this
dependence has also been documented for a variety of different physical processes
that lead to stratified turbulent mixing. For example in their laboratory experiments,
Ivey, Winters & De Silva (2000) studied benthic boundary layer turbulence energized
by internal waves impinging on a uniformly sloping bottom, while Barry et al. (2001)
and Rehmann & Koseff (2004) respectively focused on the turbulent mixing generated
by a horizontally oscillating vertical grid and a towed grid. Furthermore, studies
on the differential diffusion of salinity and temperature, including the laboratory
experiments of Jackson & Rehmann (2003) and Martin & Rehmann (2006) and the
numerical investigation of Smyth et al. (2005), have all suggested empirically that
the measured scalar diffusivities are connected to Reb. Furthermore, SKIF employed
DNS to study the special case of homogeneous stratified and sheared turbulence and
also found empirically that Kρ may be represented in terms of Ren

b. Based on the
analysis presented herein, we are now in a position to formally generalize the length
scale arguments of Ivey & Imberger (1991) and to assert that the dependence of Kρ

on Reb is a direct consequence of the Boussinesq equations.
Besides the explicit linear dependence of Kρ on Reb in (2.23), Kρ might also depend

implicitly on Reb due to a possible relation between Γ (or E ) and Reb. For example,
SKIF applied a least-squares power-law fit to their dataset with Reb> 100 and showed
that Kρ ∝ Re1/2

b , which according to (2.23) evidently implies Γ ∝ Re−1/2
b . This latter

implication has also been empirically noted by SKIF using Rf as a measure of mixing
efficiency. Furthermore, Lozovatsky & Fernando (2012), based on their observational
data with Reb > 104 for stratified flow of the atmospheric surface boundary layer,
also suggested a −1/2 power-law relation between Rf and Reb. We will return to the
discussion of such power-law relations in § 4.3.

3. Momentum diffusivity and turbulent Prandtl number
The momentum diffusivity Km (also commonly referred to as the eddy viscosity) is

conventionally defined as the ratio of the Reynolds stress (turbulent momentum flux)
to the vertical shear following the mixing length ansatz as (cf. (2.1)):

K̃ml
m =−

1
ν

〈u′w′〉
〈du/dz〉 , (3.1)

in which K̃m =Km/ν is non-dimensionalized by the kinematic viscosity ν.
Similar to Osborn (1980) who derived an expression for scalar diffusivity (2.5) (as

reviewed in § 2.1.2), Crawford (1982) also employed the simplified TKE equation



Diapycnal diffusivity, mixing efficiency and turbulent Prandtl number 475

and derived a formulation for momentum diffusivity (denoted by KCr
m ) based on its

definition in (3.1) by employing the flux Richardson number, denoted Rf , to replace
the momentum flux term. In dimensionless form, this formulation can be represented
as:

K̃Cr
m =

(
1

1− Rf

)
εk

νS2
=
(

1
1− Rf

)
RibReb, (3.2)

where Rib =N2/S2 denotes the vertically averaged gradient Richardson number.
As pointed out recently by Venayagamoorthy & Stretch (2010), these formulations

of Km include reversible contributions to the momentum fluxes in the production terms
of the TKE equation and therefore do not represent Km with adequate precision. In
order to address this issue in the context of statistically homogeneous sheared and
stratified turbulence, Venayagamoorthy & Stretch (2010) also employed the simplified
balance equation of TKE by assuming stationary turbulence as in Crawford (1982)
(i.e. P= B+ εk as discussed in § 2.1.2), but they replaced the buoyancy flux term in
terms of Kml

ρ as defined in (2.1). In order to extend their expression for Km to non-
stationary homogeneous flows, they simply replaced Kml

ρ with Kcox
ρ (the latter is defined

in (2.6), which becomes identical to K∗ρ in (2.7) for the special case of homogeneous
turbulence as discussed in Venayagamoorthy & Stretch 2006). In what follows, we will
nevertheless address this issue by following a different and more generic approach.

3.1. A revised formulation of momentum diffusivity Km

Our aim in this subsection is to propose a new expression for Km (denoted by K∗m)
which distinguishes between reversible and irreversible contributions to the momentum
diffusivity of a Boussinesq turbulent flow; a distinction which is essential to properly
defining this quantity. For this purpose we note that the total energy that is extracted
from the mean flow due to a turbulent mixing event, with a rate P, is either retained
in the system even after the turbulence decays (we define this component as the
‘reversible’ component, Pr, because it is capable in principle of initiating further
mixing events) or is eventually dissipated irreversibly into internal energy (denoted
by Pi). This decomposition can be written as:

P= Pr + Pi, (3.3)

in which P is associated with the shear production term in the TKE equation
due to the interaction between the Reynolds stresses and the mean and fluctuating
components of the flow as defined in (2.2).

To further establish the definition of Pi and Pr in (3.3), we invoke a Reynolds
decomposition of the total kinetic energy reservoir K =〈u · u〉/2, into its background
mean K = 〈u2〉/2 and turbulent K ′ = 〈u′ · u′〉/2 components, as well as the
decomposition of total potential energy into APE and BPE as discussed in § 2.2,
i.e.

K =K +K ′, (3.4)
P =PA +PB. (3.5)

Furthermore, the evolution equations for the energy budgets associated with K , K ′

and PA may be written as (Caulfield & Peltier 2000):

d
dt

K =−B− εk, (3.6)
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d
dt

K ′ =−B+ P− ε′k, (3.7)

d
dt

PA =B−M , (3.8)

in which ε′k = 2ν〈s′ijs′ij〉 (cf. (2.4)) and s′ij = (∂u′i/∂xj + ∂u′j/∂xi)/2 is the disturbance
strain rate tensor.

The ‘irreversible’ component of the shear production, Pi, is identified by considering
the evolution equation for the total available energy, EA =K +PA, namely:

d
dt

EA = d
dt
(K +PA)=−(M + εk). (3.9)

The above equation implies that the total energy that is available for irreversible
mixing at larger scales of motion, in the form of both total kinetic energy and
APE, must dissipate at the smallest scales due to either (i) viscous dissipation of
fluid filaments (εk) or (ii) a diffusive destruction of small-scale density variance and
therefore of potential energy (εp). Here we have exploited the fact that εp =M for
incompressible Boussinesq flows as explained in § 2.2 (see Tailleux 2009 for further
discussion).

We therefore attribute the irreversible monotonic decrease of EA in (3.9) to the
irreversible component of shear production, Pi, that is manifested at dissipation scales.
Thus Pi is defined as:

Pi =M + εk. (3.10)

Furthermore, the ‘reversible’ component of the shear production, Pr, is identified
by considering the energy budget of the stratified turbulence (defined as the sum of
TKE and APE, see Smyth, Carpenter & Lawrence 2007), which evolves based on the
following equation:

d
dt
(K ′ +PA)=−M − ε′k + P. (3.11)

By employing (3.3) and (3.10) and after adding and subtracting mean flow viscous
dissipation ε= ν〈(du/dz)2〉= εk− ε′k, the reversible shear production, Pr, is defined as:

Pr = d
dt
(PA +K ′)− ε. (3.12)

In other words, the reversible component of P is the rate of change in the sum
of APE and TKE reservoirs due to the reversible energy transfer to the mean flow
kinetic energy after subtracting the irreversible dissipation of mean flow kinetic energy
(ε), because the latter is supplied by the irreversible component of P. Therefore the
energy that was noted earlier as being retained after a mixing event is completed, is
only associated with the mean flow kinetic energy that is capable of initiating further
mixing events. In addition, notice that Pr does not contribute to the irreversible loss
of EA in (3.9). It, rather, contributes to the reversible energy exchanges between the
APE–TKE energy reservoir and the mean flow kinetic energy (K ).

For characterizing K∗m, only the irreversible component of such shear production (i.e.
Pi), must be employed, whereby K∗m is defined as:

K̃∗m =
Pi

νS2
. (3.13)
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Similar to the general definition of Kρ in (1.1), Km may also be defined as the ratio
of a ‘flux’ to a ‘gradient’ (with a negative sign). Therefore (3.13) is obtained by
considering −Pi/S as the appropriate irreversible momentum ‘flux’ and the vertical
shear S, as the required ‘gradient’.

Given the definition of Pi in (3.10), there are two alternative ways of incorporating
previous concepts regarding irreversible mixing of the scalar field into the definition
of K̃∗m. First, by employing the definition of irreversible mixing efficiency in (2.22),
Pi may be re-written as:

Pi = εk

1− E
. (3.14)

Second, by evoking the relationship between M and φd in (2.21) and recalling the
definition of K̃∗ρ in (2.23), which effectively implies K̃∗ρ = M /(κN2

∗), Pi may be
alternatively expressed as:

Pi = (κN2
∗)K̃

∗
ρ + εk, (3.15)

in which N2
∗ is again defined based on the adiabatically sorted density profile.

The above two expressions for Pi in (3.14) and (3.15) are identical. Nonetheless we
have provided both forms because each manipulation has been exploited previously in
Crawford (1982) and Venayagamoorthy & Stretch (2010) with certain limitations in
each case as reviewed earlier. In what follows we will use each of these alternative
forms of Pi to derive corresponding alternative expressions for K̃∗m based on (3.13)
which facilitates comparison with the previous formulae of Crawford (1982) and
Venayagamoorthy & Stretch (2010).

By employing Pi based on either (3.14) or (3.15), K̃∗m may be written in
dimensionless form as either of the following expressions:

K̃∗m =
(

1
1− E

)
εk

νS2
, (3.16)

K̃∗m =
(

Ri∗b
Pr

)
K̃∗ρ +

εk

νS2
, (3.17)

in which Ri∗b = N2
∗/S

2 is defined based on the sorted background density profile.
Obviously, by equating K̃∗m based on (3.16) and (3.17), the revised expression for K̃∗ρ
in (2.23) is obtained.

It is important to note that (3.16) closely resembles the formulation of Crawford
(1982) in (3.2) except for the following critical differences. (i) The new formula
for Km employs the correct definition of mixing efficiency E rather than the flux
Richardson number Rf (refer to Peltier & Caulfield 2003 and Tailleux 2009 for a
discussion of the intrinsic differences between E and Rf ). Moreover, (ii) the expression
for Km in (3.16) does not involve any assumptions concerning the flow dynamics,
as opposed to (3.2) which is derived based on the same limitations as those of the
Osborn formula for Kρ .

In addition, (3.17) also closely resembles the homogeneous formulation of
Venayagamoorthy & Stretch (2010) (see their equation (2.8)) although it significantly
extends their expression to any inhomogeneously stratified Boussinesq flow at
sufficiently high Re.



478 H. Salehipour and W. R. Peltier

3.2. Turbulent Prandtl number Prt

A non-dimensional parameter of fundamental concern is the ratio of turbulent
momentum diffusivity to the diapycnal diffusivity of density as characterized by
the turbulent Prandtl number Prt =Km/Kρ . Using the newly proposed expressions for
Kρ in (2.23) and for Km in (3.16), Prt becomes:

Prt = Rib

E
. (3.18)

In the absence of careful definitions for Kρ and Km, Prt is commonly defined as
the ratio of Kml

m in (3.1) to Kml
ρ in (2.1) based on the mixing length argument, which

results in Pr ml
t =Rib/Rf . The new expression for Prt in (3.18) also resembles this basic

definition of turbulent Prandtl number except that E appears in place of Rf . As a result
of this slight but important modification, Prt represents only the ratio of irreversible
components of scalar and momentum diffusivities, which again critically depends on
the accurate definition of irreversible mixing efficiency.

4. Direct numerical simulations of inhomogeneously stratified, shear-generated
turbulence
In this second part of the paper, we will illustrate the results obtained using

the newly proposed formulations for Kρ , Km and Prt, and in the case of Kρ will
compare this with the complete set of models we have reviewed. A large dataset
of original DNS results associated with the KH ansatz will be employed to achieve
this goal. First, in § 4.1 we describe our choice of problem configuration as well
as the numerical methodology to be employed. The results obtained on the basis of
these analyses are then consolidated in §§ 4.2–4.5. In appendix A, we will comment
on the other model problem that has been employed for the study of shear-induced
turbulence in stratified flows (e.g. in SKIF), which is referred to as homogeneous
stratified and sheared turbulence.

4.1. Design of the suite of DNS analyses
Our intention is to provide a detailed investigation of the stratified turbulence that
is generated through the transition of a primary shear instability in the form of a
Kelvin–Helmholtz wave which thereafter ‘breaks’ to generate the turbulence of interest.
As initial conditions, the velocity and density fields are set to the following one-
dimensional initial profiles:

U0(z)=U0 tanh
( z

d

)
, ρ0(z)= ρ0 −1ρ tanh

( z
d

)
, (4.1a,b)

which are both assumed to have equal thickness 2d. Also U0 and ρ0 denote a reference
velocity and density while 1ρ describes a fixed density difference across the shear
layer. The coordinate system is chosen such that x, y and z are aligned with the
streamwise, spanwise and vertical directions respectively.

We non-dimensionalize the governing Boussinesq equations in (2.9)–(2.11) by
choosing ρ0, U0 and d (half of the shear layer thickness) as the characteristic density,
velocity and length scales which become:

Dui

Dt
=− ∂p

∂xi
− Ri0ρδi3 + 1

Re
∂2ui

∂x2
j
, (4.2)
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∂ui

∂xi
= 0, (4.3)

Dρ
Dt
= 1

Re Pr
∂2ρ

∂x2
j
. (4.4)

The three non-dimensional control parameters which appear in the above non-
dimensional form of the governing equations, namely the Reynolds, Richardson
and Prandtl numbers are respectively defined as:

Re= U0d
ν
, Ri=− g

ρ0

∂ρ

∂z

(
∂u
∂z

)−2

, Pr= ν
κ
. (4.5a−c)

The minimum value in the initial profile of Ri (not to be confused with its vertically
averaged bulk measure defined in (1.2) as Rib), obtained from the initial density
and velocity profiles in (4.1), occurs at the inflection point of the velocity profile
(located at z= 0). We will denote this specific choice of gradient Richardson number
by Ri0, which appears as the coefficient of the non-dimensional buoyancy term in
(2.9). We also retain our non-dimensional representations of diapycnal diffusivity and
momentum diffusivity as introduced in the previous section, namely K̃ρ = Kρ/κ and
K̃m = Km/ν in which κ = ν/Pr and ν = U0d/Re based on our choice of Pr and Re
in the non-dimensionalized Boussinesq equations. We also note in passing that it is
common practice in the oceanographic literature (e.g. Smyth et al. 2001) to choose
2ρ0, 2U0 and 2d as the characteristic density, velocity and length scales for the
non-dimensionalization. Therefore our Re should be multiplied by four in order to
make direct comparisons to these earlier studies.

The DNS-based analysis of stratified turbulent flows to be discussed in the main
body of this paper include those reported in Salehipour, Peltier & Mashayek (2015)
(with Re = 6000, Ri0 = 0.12 and Pr = 1, 2, 4, 8, 16) as well as an additional series
of new simulations which are all listed in table 1. In the subset of these simulations
discussed in Salehipour et al. (2015), the focus was upon variations in the molecular
Prandtl number at a fixed Reynolds number of Re = 6000 and a fixed minimum
initial gradient Richardson number (at the inflection point) of Ri0 = 0.12. The new
set of simulations includes various Ri0 at a fixed Re and Pr (Re = 6000, Pr = 1, 8)
and various Re at a fixed Ri0 and Pr (Ri0 = 0.16, Pr = 1, 8). All these simulations
have been performed using the modern spectral element code, Nek5000, developed
at the Argonne National Laboratory (Fischer, Kruse & Loth 2002; Fischer, Lottes &
Kerkemeier 2008). The governing Navier–Stokes equations are discretized using the
weak Galerkin formulation by employing Nth-order Lagrange polynomial interpolants
following the PN − PN−2 formulation of Maday, Patera & Rønquist (1990) for the
velocity (N) and pressure (N − 2) spaces respectively. In terms of the temporal
discretization, a third-order semi-implicit operator-splitting method is employed
(Maday et al. 1990; Fischer 1997). Besides higher-order accuracy, this code is
ideally suited for our high-Re, high-Pr numerically demanding simulations due to its
perfect scaling up to thousands of processors (we have successfully employed up to
65 536 cores on a BlueGene/Q machine). Table 1 also includes the streamwise (Lx),
spanwise (Ly) and vertical (Lz) extents of the computational domain as well as the
number of elements in each direction (i.e. Kx,Ky,Kz). The domain is periodic in the x
and y directions, while the top and bottom boundaries are assumed to be free-slip and
impermeable for velocity and insulated (zero density flux) for the density field. For
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Re Ri0 Pr Lx Ly Lz Lc
z N Kx Ky Kz Kc

z

6 000 0.12 1 14.27 3 30 10 10 64 13 66 44
6 000 0.12 2 14.27 3 30 10 10 64 13 66 44
6 000 0.12 4 14.27 3 30 10 10 90 18 88 62
6 000 0.12 8 14.27 3 30 10 10 127 25 116 88
6 000 0.12 16 14.27 3 30 10 10 180 36 156 124
6 000 0.005 1 14.27 3 50 30 10 64 13 154 132
6 000 0.01 1 14.27 3 30 20 10 64 13 104 88
6 000 0.02 1 14.27 3 30 20 10 64 13 104 88
6 000 0.04 1 14.27 3 30 20 10 64 13 104 88
6 000 0.08 1 14.27 3 30 20 10 64 13 104 88
6 000 0.16 1 14.27 3 30 10 10 64 13 66 44
6 000 0.20 1 14.27 3 30 10 10 64 13 66 44
6 000 0.02 8 14.27 3 30 10 10 127 25 116 88
6 000 0.04 8 14.27 3 30 10 10 127 25 116 88
6 000 0.10 8 14.27 3 30 10 10 127 25 116 88
6 000 0.14 8 14.27 3 30 10 10 127 25 116 88
6 000 0.16 8 14.27 3 30 10 10 127 25 116 88
6 000 0.18 8 14.27 3 30 10 10 127 25 116 88
6 000 0.20 8 14.27 3 30 10 10 127 25 116 88
4 000 0.16 1 14.27 3 30 10 10 47 10 53 33
4 000 0.16 8 14.27 3 30 10 10 94 19 91 65
8 000 0.16 1 14.27 3 30 10 10 80 16 69 55
8 000 0.16 8 14.27 3 30 10 10 158 32 139 109

12 000 0.16 1 14.27 3 30 10 10 108 22 100 74

TABLE 1. Details of the three-dimensional numerical experiments in which the total grid
points is about N3KxKyKz. Also, Lc

z represents the height of a central region of the domain
which is further refined with Kc

z elements. Outside Lc
z , the adjacent elements of the grid

are gradually stretched by a factor of 1.25 %.

further details concerning the numerical set-up, grid design, domain size, resolution
requirements and initial perturbations the interested reader is referred to Salehipour
et al. (2015).

For all the figures to be presented in this paper, we have adopted a special
annotation to differentiate between the simulations that have different Pr and Rib. All
the runs at Pr= 1 are marked by a circle (E) while those at Pr= 8 are shown by a
triangle (A). Single runs at Pr= 2, 4, 16 are also shown respectively by ×, + and ∗.
Furthermore, the marker size was chosen to approximately represent the vertically
averaged gradient Richardson number, Rib, such that lower Rib corresponds to smaller
symbols. These distinctions are not intended to delineate these runs, but rather to
facilitate our discussions to follow.

Unless otherwise stated explicitly, in all the results to be discussed in what follows
the bulk measure of the gradient Richardson number, Rib, will be calculated as
Rib=N2/〈(du/dz)2〉 (i.e. vertical shear is first squared and then vertically averaged) in
which N2 =−Ri0〈dρ/dz〉 = Ri01ρ/Lz due to our non-dimensionalization. Appendix B
compares this preferred form of Rib with an alternative definition for Rib in which
shear is first vertically averaged over the shear layer and then squared. Based on
all of the DNS cases, an empirical relationship between the two definitions is also
suggested in appendix B, which may serve as a mapping function between these two
forms of Rib.
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FIGURE 1. Illustrations of density field evolution. Streamwise-vertical cross-section at the
mid-point in the cross-stream y direction for different time snapshots ts

2d, t ∈ [ts
2d to

f ], ts
3d,

t ∈ [ts
3d te

f ] and te
f . For the definition of these times refer to the text.

Figure 1 illustrates an example DNS analysis in which the density field for a case
with Re = 6000, Pr = 8 and Ri0 = 0.16 is shown in different panels corresponding
to different snapshots of time during flow evolution. Note that the time-dependent
flow field undergoes various stages of evolution, beginning with the growth of the
two-dimensional Kelvin–Helmholtz instability whose kinetic energy saturates at a time
denoted by ts

2d in figure 1(a). The onset of the fully turbulent regime does not begin
until to

f > ts
2d, at which time the kinetic energy of inherently three-dimensional flow

components finally exceeds that of the two-dimensional flow (figure 1c). For the time
period of ts

2d < t < to
f (figure 1b), three-dimensional secondary instabilities grow and

facilitate the transition to turbulence. At a time ts
3d > to

f , three-dimensional kinetic
energy has saturated relative to the two-dimensional flow component and thus there is
hardly any visible signature of the original two-dimensional KH wave in the flow field
(figure 1d). We have realized that it is critical not to define ts

3d as the time when the
kinetic energy of the three-dimensional flow is highest because this point may occur
when the kinetic energy of the two-dimensional KH wave continues to overwhelm
that of the induced three-dimensional turbulence and is therefore not associated with
the fully turbulent phase. The period of sustained or decaying turbulence ends at a
time denoted by te

f , which we have chosen to define based on a threshold minimum
Reb. The flow field begins to re-laminarize (figure 1f ), usually around Reb = 20 in
agreement with previous suggestions in the literature (e.g. see Stillinger, Helland &
Atta 1983; Smyth & Moum 2000b). For the purpose of all of the analyses to be
discussed in this paper, te

f is, rather, defined based on a threshold minimum value of
Reb = 1 in order to also encompass the mixing properties of weakly turbulent flows
with extremely low Reb. In addition, we will entirely focus upon the period of fully
turbulent flow (i.e. ts

3d 6 t 6 te
f , depicted in figure 1d–f ) in order to calculate mixing

efficiency as well as the scalar and momentum diffusivities.
In terms of the non-dimensional control parameters, Dp (as introduced in § 2.2)

may be rewritten as Dp = Ri01ρ/(RePrLz) where Lz is the vertical extent of the
computational domain. In all the DNS cases tabulated in table 1, 1ρ = 2, Lz = 30,
Ri0∼O(10−1–10−2), Pr∼O(100–101) and Re∼O(103–104). Thus Dp∼O(10−9–10−6),
which is two to five orders of magnitude smaller than the irreversible mixing, M ,
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that is usually of order M ∼O(10−4) (also non-dimensional). During the final stages
of the KH life cycle however, the flow begins to re-laminarize and turbulent mixing
decays to zero (i.e. M ∼Dp∼ 0 when Reb∼O(100–101)). This may seem to suggest
that the revised formulation for K̃ρ in (2.23) might not be applicable because (2.18) is
not strictly satisfied when M ∼Dp. Nevertheless, since turbulent mixing is negligible
during this stage in any event (i.e. M ∼ 0), our proposed framework still holds and
predicts that both mixing efficiency and diapycnal diffusivity would decay to zero.

4.2. Scalar diffusivity estimation: a comparative study
Different estimations of diapycnal diffusivity Kρ that are commonly employed in the
literature will be compared here with the ‘correct’ value of scalar diffusivity K∗ρ . As
discussed in § 2.3, the ‘correct’ formulation of K∗ρ was proposed in the context of the
diascalar framework of WD96 which has been mathematically reformulated in this
paper into the form of a more familiar ‘Osborn-like’ expression. Therefore K∗ρ may
be considered to have been calculated based on either method.

Figure 2 contains the individual comparisons made between each non-dimensional
estimation of scalar diffusivity and K̃∗ρ = Kρ/κ . Figures 2(d) and 2(c) investigate the
accuracy of the Osborn (1980) (with Rf = 0.17 or γ = 0.2, see (2.5)) and Osborn
& Cox (1972) (see (2.6)) models for estimating diapycnal diffusivity. As far as
the mixing length model is concerned, K̃ml

ρ in (2.1) has been calculated using two
alternative assumptions for the perturbation density flux ρ ′w′. Namely (i) K̃ml

ρ′ in
figure 2(a) involves the conventional Reynolds decomposition (f = f + f ′) whereas
(ii) K̃ml

ρ3d
in figure 2(b) employs a density flux that is only based on the inherently

three-dimensional component of a triple Reynolds decomposition (f = f + f2d + f3d).
Here f denotes either density or vertical velocity fields and f isolates the horizontal
mean from the 2d and 3d components which respectively represent the spanwise
averaged and fully three-dimensional components of a flow field (refer to Caulfield
& Peltier 2000 for precise definitions).

Figure 2 illustrates the fact that the models investigated herein are accurate only
within a factor of approximately four. In general, there is a fundamental problem
concerning the use of ‘turbulent’ density flux, ρ ′w′, in the mixing length model
in order to estimate the diapycnal diffusivity. Namely, the density flux in the
usual vertical coordinate system would inevitably and improperly include reversible
processes in the estimation of Kρ . For example, the direct field measurements of
the instantaneous density flux ρ ′w′ (e.g. Moum 1990; Fleury & Lueck 1994) attest
to the fact that the interpretation of such measurements is non-trivial since this
flux becomes as frequently positive (down-gradient) as negative (counter-gradient).
Furthermore, figure 16 in Mashayek & Peltier (2013) shows negative values for Kρ

derived on the basis of the use of (2.1) using ρ ′w′, which is clearly unphysical. Due
to its logarithmic scale, figure 2(a) does not show the negative values of K̃ml

ρ′ , but
the large scatter away from the correct estimation of diapycnal diffusivity should
be seen as indicative of the same fundamental problem. Although use of a triple
Reynolds decomposition to obtain ρ3dw3d is empirically seen to produce values for
this flux which are strictly positive, K̃ml

ρ3d
is still unable to capture the complete

irreversible diapycnal flux φd as defined in (2.8) or (2.21) because there exists a
clear offset between K̃ml

ρ3d
and K̃ρ which points to the fact that ρ3dw3d systematically

underestimates φd.
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FIGURE 2. Comparing the accurate representation of scalar diffusivity K̃∗ρ (2.7) or (2.23)
with: (a) mixing length model (2.1) based on a full perturbation buoyancy flux K̃ρ′ or (b)
based on inherently three-dimensional buoyancy flux K̃ρ3d ; (c) the Osborn–Cox model K̃cox

ρ

(2.6); and (d) the Osborn formula K̃osb
ρ (2.5) (with Rf = 0.17). The dashed (dotted) lines

show a factor of four (two) under/over-estimation. See figure 3 caption for description of
symbols.

Although the Osborn–Cox model also underestimates the actual scalar diffusivity
in figure 2(c), it seems to provide the best estimates among the complete set of
approximate models. Not only is K̃cox

ρ (or the Cox number) close to the actual
values of K̃∗ρ (i.e. 0.25K̃∗ρ 6 K̃cox

ρ 6 K̃∗ρ), but it also correctly follows the trend in K̃∗ρ
(i.e. the independent series of data points are all individually aligned with the solid
line of K̃cox

ρ = K̃∗ρ). In fact, the Osborn–Cox estimate would be accurate (within an
approximately ±50 % offset), if it were multiplied by a factor of 2. This is based on
figure 2(c) in which the DNS data encompass the line K̃cox

ρ = 0.5K̃∗ρ (dotted line in
figure 2c).

The Osborn model in figure 2(d), on the other hand, does not follow the trend in
K̃∗ρ . In fact, K̃osb

ρ deviates noticeably from the line of K̃osb
ρ = K̃∗ρ at both extreme limits

of diapycnal diffusivity. This inaccuracy has been commonly remarked upon as being
associated with the assumptions employed in the derivation of the Osborn formula
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(Mashayek, Caulfield & Peltier 2013; Mashayek & Peltier 2013), in addition to the
accepted deviations of mixing efficiency from any canonical constant value (e.g. Ivey
et al. 2008). Although geophysical flows do not obey the simplifying assumptions of
Osborn (1980), we showed in § 2.3 that for any Boussinesq stratified fluid with high
Re, an expression for Kρ similar to the Osborn formula is indeed accurate, provided
that E replaces the flux Richardson number Rf . It is worthwhile noting that, even if a
‘variable’ flux Richardson number were to be used in the Osborn model (2.5), there
would still exist an inconsistency between K̃osb

ρ and K̃∗ρ due to an inherent inability
of Rf to isolate the diabatic process of irreversible mixing from the adiabatic process
of reversible stirring (Peltier & Caulfield 2003; Tailleux 2009). Nonetheless, the major
discrepancy between K̃osb

ρ and K̃∗ρ in figure 2(d) should be ascribed to the assumption
of constant mixing efficiency. The issue of constant versus variable mixing efficiency
is a pressing one because, based on (2.23), K̃∗ρ ∝ E /(1 − E ) which indicates that
extreme variations of K̃∗ρ will occur in the near vicinity of E = 0. This implies that
using E = 0.17 (or Γ = 0.2) would overestimate K̃∗ρ by several orders of magnitude if
the stratified shear flow is being mixed quite inefficiently (e.g. when the flow is either
very weakly or highly stratified).

For the remainder of this paper, we will primarily employ the accurate formulation
of diapycnal diffusivity K̃∗ρ obtained from either (2.7) or (2.23). To simplify notation,
we will drop the asterisk and simply refer to K̃ρ as the diapycnal scalar diffusivity.
The dimensionless notation (denoted by K̃) will be retained, which implies division
by molecular diffusivity, κ , and kinematic viscosity, ν, for K̃ρ and K̃m respectively.

4.3. Turbulent scalar diffusivity and mixing efficiency
Figure 3 compiles the data derived from all of the simulations whose characteristics
have been tabulated in table 1 and illustrates the variations of K̃ρ with respect to the
buoyancy Reynolds number Reb= εk/(νN2). The data points for each DNS experiment
are associated with the fully turbulent phase of the flow evolution which belong to
t ∈ [ts

3d te
f ]. For the purpose of generating this figure (and the similar figures to be

discussed in what follows), as noted in § 4.1 we have computed te
f based on Reb = 1

in order to also include the re-laminarized flow whose turbulent diapycnal diffusivity
approaches zero. It is important to mention that not all of the DNS runs have
achieved Reb = O(100–101). Especially for the weakly stratified cases, in which the
turbulence suppressing influence of the buoyancy force is considerably weaker than
other more highly stratified situations, the turbulence persists for much longer periods
(i.e. te

f � ts
3d). Thus in these cases, as will be illustrated later, the simulations require

a much greater expenditure of computational resources in order to allow the full
influence of the buoyancy effects to activate so as to significantly diminish the
turbulence intensity.

The magnitude of diapycnal diffusivity, Kρ , in the interior of lakes and oceans
is typically of O(κ) and O(102κ) respectively (Ivey et al. 2008). These values
however increase to O(102κ) (for lakes) and O(104κ) (for oceans) as we approach
abyssal regions with rough topography (Ledwell et al. 2000). In addition, there are
other ‘hot spots’, such as coastal zones and equatorial near-surface currents, where
Kρ may be as large. The range of our non-dimensionalized diapycnal diffusivity
K̃ρ = Kρ/κ in figure 3 reaches O(103) due to the higher molecular Prandtl numbers
of O(10) investigated in this work. For instance, if we take the molecular diffusivity
of temperature-stratified seawater as κT = 10−7 m2 s−1, and its molecular Prandtl
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FIGURE 3. Variation of non-dimensional diapycnal scalar diffusivity K̃ρ = Kρ/κ with the
buoyancy Reynolds number Reb = εk/νN2. K̃ρ has been calculated based on (2.7) due to
WD96 or our proposed reformulation in (2.23). This figure illustrates a compilation of 24
DNS runs with various combinations of Re, Ri0 and Pr as tabulated in table 1 and are all
associated with the fully turbulent phase of the flow evolution as defined in the text for
the KH ansatz;E, Pr= 1; ×, Pr= 2; +, Pr= 4;A, Pr= 8; ∗, Pr= 16. Bigger (smaller)
markers are associated with higher (lower) Rib. Time increases roughly as Reb decreases.

number to be Pr = 7, then the DNS results at Pr = 8 in figure 3 suggest that
the range of dimensional turbulent diapycnal diffusivity Kρ reaches approximately
Kρ ≈ 10−4 m2 s−1, which lies within the range of estimated turbulent diffusivities in
the ocean (Waterhouse et al. 2014).

It is useful to compare our DNS results for Kρ with those reported in figure 1
of SKIF. Based on their numerical results, SKIF categorized the turbulent mixing
into three regimes in terms of Reb: (i) a ‘molecular’ regime for Reb < 7, (ii) an
‘intermediate’ regime corresponding to stationary turbulence for 7 < Reb < 100 and
(iii) an ‘energetic’ regime for Reb> 100. Note that the DNS results of SKIF are based
on a constant value of Pr = 0.72 whereas figure 3 includes DNS runs with various
Pr. Thus we have normalized K̃ρ by Pr in figure 4, thereby effectively plotting
Kρ/ν (where Kρ is dimensional) versus Reb. Despite the intrinsic differences between
the geophysically relevant flows we are analysing (e.g. see Smyth et al. 2001 for a
discussion concerning such relevance) and the more highly constrained homogeneous
problem of SKIF and their calculation methodology for Kρ (which is based on
the mixing length model), there exist striking similarities between our figure 4 and
their figure 1. In order to better highlight the similarities, figure 4 also includes
the approximation of diapycnal diffusivity due to Osborn (1980), K̃osb

ρ = 0.2 Pr Reb,
as discussed in § 2.1.2 (shown by a dashed line), as well as the line of best fit
taken from SKIF for their ‘energetic’ regime, namely K̃ρ = 2 Pr Re1/2

b (shown by a
solid line).

Similar to SKIF, a transition to a noticeably different regime of turbulent mixing is
also evident in our simulations at approximately Reb=O(102). However, unlike SKIF,
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FIGURE 4. Variation of non-dimensional diapycnal scalar diffusivity K̃ρ (after being
normalized by Pr) with Reb= εk/νN2 for all of the DNS cases investigated. – – –, Osborn
formula of K̃ρ = 0.2 Pr Reb (2.5); ——, K̃ρ = 2 Pr Re1/2

b best fit in SKIF. For symbol
conventions, refer to figure 3.

our data that reside in the range of 7 < Reb < 100 are associated with dynamically
evolving flow fields that bear minimal resemblance to ‘stationary’ turbulence (e.g. see
our figure 1). In fact, our results show that the major difference between DNS
cases whose Reb exceeds 100 and those below Reb ≈ 100 is associated with their
stratification level. The onset of turbulence for the ‘weakly stratified’ simulations with
the minimum initial Richardson numbers of Ri0= 5× 10−3, 1× 10−2 and 2× 10−2 (at
Pr= 1 and Re= 6000), occurs well above Reb= 100, while most of the other runs that
are relatively more ‘strongly stratified’ belong to the regime with Reb< 100. For these
reasons, it is more instructive to denote the ‘intermediate’ and ‘energetic’ regimes of
SKIF respectively as corresponding to ‘buoyancy-dominated’ and ‘shear-dominated’
mixing regimes based on the competing dominance of density stratification and
velocity shear as characterized by Rib. Furthermore, the ‘molecular’ regime in which
molecular diffusion dominates the turbulent diffusion (i.e. K̃ρ < 1) seems to occur at
Reb = O(100), with Reb = 7 as a reasonable characteristic value (in agreement with
SKIF) for the transition from the ‘molecular’ regime to the ‘buoyancy-dominated’
regime.

None of the above transition points should be regarded as precise because a
transition from one regime of mixing to another would be expected to occur
smoothly. For example, Bouffard & Boegman (2013) suggested a new Pr-dependent
regime between the ‘molecular’ and the ‘intermediate’ regimes of SKIF in which
the diapycnal diffusivity varies with a different slope of Re3/2

b . Our DNS results also
support this slight change in the slope for this limited range of Reb (especially for the
higher-Pr simulations). However, we believe that any careful attempt to estimate the
variations of K̃ρ/Pr in figure 4 in terms of a power-law relation (i.e. K̃ρ/Pr ∝ Reαb )
would essentially lead to a piecewise fragmentation of K̃ρ as a function of Reb which
would be of limited utility.
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FIGURE 5. (a) Time variations of the buoyancy Reynolds number Reb = εk/(νN2) for all
of the DNS cases investigated. (b) The interdependence of Reb and vertically averaged
Richardson number Rib = N2/S2 for all of the DNS cases investigated. For symbol
conventions, refer to figure 3.

Furthermore, a careful inspection of figure 4 indicates that at a fixed Reb, the
gradient Richardson number of the flow (in a vertically averaged sense as defined
in (1.2)) as well as the molecular Prandtl number Pr also affect K̃ρ/Pr. However,
to a first order, the buoyancy Reynolds number is clearly the single most relevant
dimensionless parameter that may be employed to characterize the turbulent mixing
and its associated diffusivity. This conclusion extends the suggestions of SKIF
regarding the importance of Reb in the categorization of mixing regimes, to a more
geophysically relevant example of turbulent mixing. An important caveat to this,
however, is that as a consequence of their focus upon the simplified model of
homogeneous stratified sheared turbulence, SKIF did not capture the connection
between Reb and Rib in the transition from the ‘buoyancy-dominated’ to the
‘shear-dominated’ mixing regimes, to which we will return for further discussion
in what follows.

The reason that we are not accounting for the effect of the molecular Prandtl
number on Kρ in figure 4 is that our available DNS data are insufficient to allow the
full characterization of its effect in both regimes. It was shown in Salehipour et al.
(2015) however that for the ‘buoyancy-dominated’ mixing regime, the irreversible
mixing efficiency decreases as Pr increases, due to the emergence of smaller-scale
secondary instabilities through which the three-dimensional turbulence is injected
directly into smaller scales. As a result, the downscale cascade of energy is accelerated
and furthermore the entrainment of the higher-speed flow, characteristic of the
flanks of the shear layer, into the mixing region is weakened and consequently
the irreversible mixing becomes less efficient. Based on our discussion in § 2.3,
because mixing efficiency decreases for higher values of Pr, the diapycnal diffusivity
is also expected to decrease, which is also manifested in figure 4. Nevertheless,
characterizing the effect of Pr on mixing efficiency in the ‘shear-dominated’ regime,
where the suppressing effects of buoyancy are relatively weak, requires long time
integrations of an already high-resolution DNS, which is excessively expensive. The
long time integrations required for the DNS cases in the ‘shear-dominated’ regime
may be inferred from figure 5(a) which illustrates the time evolution of Reb for all
the simulations.



488 H. Salehipour and W. R. Peltier

10–2

10–1

100 101 102 103 104

FIGURE 6. Variation of irreversible mixing efficiency E (2.22) with Reb = εk/νN2 for
all of the DNS cases investigated. – – –, The constant value of Rf = 1/6 associated with
γ = 0.2 in the Osborn formula (2.5); ——, Rf = 1.5Re−1/2

b best fit in SKIF. For symbol
conventions, refer to figure 3.

Based on the reformulation of Kρ proposed in (2.23) (following WD96), the
variation in scalar diffusivity as a function of Reb has to be associated with the
inherent and intricate dependences of the mixing efficiency E (or flux coefficient Γ )
on the governing control parameters. It is therefore expected, based on mathematical
grounds (and not length scale arguments), that for any stratified turbulent flow subject
to the Boussinesq approximations and at sufficiently high Re, K̃ρ may vary linearly
with Reb if and only if the mixing efficiency is independent of Reb. Likewise K̃ρ

would conceivably vary like Re1/2
b (or Re3/2

b ) if and only if E or Γ were to vary
like Re−1/2

b (or Re1/2
b ). In other words, a simple picture for E which emerges after

considering these piecewise power-law expressions and the formulation for Kρ in
(2.23), suggests that the mixing efficiency would be expected to increase within the
lower range of Reb like E ∝ Re1/2

b , stay constant for some intermediate range of Reb

and then decrease for higher values of Reb like E ∝ Re−1/2
b . Of course as mentioned

previously for Kρ , E is expected to deviate from the above approximate view such
that it would vary smoothly from one regime to the other.

Figures 6 and 7 illustrate the dependence of the irreversible mixing efficiency,
E defined in (2.22), on respectively the buoyancy Reynolds number Reb, and the
vertically averaged gradient Richardson number Rib, again for the entire database
of DNS experiments. Based on these figures, E varies (in an ensemble-averaged
sense) non-monotonically with both Reb and Rib, which agrees with previous
DNS, experimental and observational investigations (Caulfield & Peltier 2000;
Ivey et al. 2008; Bouffard & Boegman 2013; Mashayek et al. 2013). The bulk
Richardson number associated with the transition between ‘shear-dominated’ and
‘buoyancy-dominated’ mixing regimes in figure 7 occurs at approximately Rib ∼ 0.2
(also see figure 5b which illustrates the variations of Reb with Rib). Note that this
transition value appears to be independent of the Rib definition as discussed in
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FIGURE 7. Variation of irreversible mixing efficiency E (2.22) with Rib =N2/S2 for all
of the DNS cases investigated. For symbol conventions, refer to figure 3.

appendix B. Based on figure 7 (or figure 5b), in the ‘buoyancy-dominated’ and
‘molecular’ regimes, Rib remains almost constant as the turbulence ages (i.e. as
the turbulence intensity measured by Reb decays). This is in clear contrast to the
‘shear-dominated’ regime in which Rib increases as turbulence ages up to the
transition value of about 0.2 after which it tends to stay constant. Note that the
above observation concerning the characteristics of the ‘shear-dominated’ regime
contradicts SKIF (e.g. see their figure 14a) who argued that Rib cannot exclusively
characterize diapycnal diffusivity in this regime. It should be emphasized that the
DNS study of SKIF is designed such that the background shear and stratification are
forced to remain constant throughout the flow evolution, whereas in our DNS study
Rib evolves freely (see e.g. figure 5b).

In the ‘buoyancy-dominated’ regime, the mixing efficiency may not be characterized
solely by Rib because it becomes approximately constant while E decreases to zero.
Nonetheless, it is particularly interesting to notice that the dependence of the mixing
efficiency on Rib is evident in the ‘shear-dominated’ regime (see figure 7). This
implies that in the ‘shear-dominated’ regime, Reb and Rib are no longer independent
parameters and there could be a unique mapping between them. Such a mapping
would be important because it could suggest that for the ‘shear-dominated’ mixing
regime, simple parameterizations for the viscous subrange energy dissipation εk may
be obtained in terms of the Richardson number of the mean flow; a task which has
long been attempted (e.g. see Large, McWilliams & Doney 1994). However, finding
the unique relations between Reb and Rib would require a much expanded set of
DNS analyses of ‘shear-dominated’ mixing, which is beyond the scope of the current
paper.

4.4. The eddy diffusivity for momentum
Focusing next on the eddy diffusivity for momentum Km, figure 8 shows the variations
of non-dimensional momentum diffusivity K̃m = Km/ν with Reb for the complete set
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FIGURE 8. Variation of non-dimensional momentum diffusivity K̃m = Km/ν with Reb =
εk/νN2. K̃m has been calculated based on our proposed formulation in (3.16) for all of
the DNS cases investigated. For symbol conventions, refer to figure 3.
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FIGURE 9. Similar to figure 8 but K̃m is now normalized by Rib =N2/S2.

of DNS runs. K̃m is calculated based on the representation proposed in (3.16) which
distinguishes between the reversible and irreversible shear production fluxes. Note that
K̃m in (3.16) may be re-written as K̃m = (1 − E )−1Rib Reb to explicitly include the
buoyancy Reynolds number, Reb. Normalizing K̃m by Rib would collapse the data onto
an almost straight line as illustrated in figure 9 which points to the fact that K̃m/Rib≈
Reb for the entire range of Reb. This is not surprising considering the role of mixing
efficiency in the formulation for K̃m.
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In contrast to the scalar diffusivity K̃ρ in (2.23), which is proportional to E /(1−E ),
the momentum diffusivity K̃m in (3.16) is proportional to 1/(1− E ). This important
difference implies that Km varies monotonically for the range of accepted mixing
efficiencies associated with shear-induced stratified turbulence (i.e. 0 6 E 6 0.3). This
should be contrasted with the dependence of Kρ on mixing efficiency, which undergoes
abrupt variations in the vicinity of E = 0. Therefore the accurate representation of
mixing efficiency, whether it is defined as either the flux Richardson number Rf or
the mixing efficiency E , or even assumed to be constant at 0.17 or 0.2, would affect
Km minimally while it might cause orders of magnitude difference in Kρ . As a result,
for turbulent flows with relatively small values of E , the estimation of Crawford
(1982) for Km (reproduced in (3.2)) should be recognized to be as accurate as our
proposed expression (3.16).

4.5. Turbulent Prandtl number
Numerical modelling of larger-scale fluid phenomena rely on subgrid-scale parameteri-
zations to prescribe both Kρ and Km. It is often assumed that Prt = Km/Kρ = 1
on the basis of the notion that, for a turbulent flow, the effective diffusivities of
mass and momentum are identical (e.g. see the parameterization for tidally induced
mixing proposed by Klymak et al. 2010). A further example involves ocean general
circulation models such as the Parallel Ocean Program (POP) (which is currently
being employed as the ocean component of the Community Earth System Model
(CESM1) of the US National Center for Atmospheric Research). In this model, the
turbulent mixing associated with tidally induced internal waves in the ocean interior is
parameterized following St. Laurent et al. (2002) and Simmons et al. (2004), in which
Kρ is assumed to diminish exponentially as a function of increasing height above the
sea floor, with horizontal variations assumed to be related to the expected changes in
tidal dissipation with longitude and latitude associated with bottom topography, and
which also includes an assumption that the value of the flux coefficient is γ = 0.2 as
suggested in Osborn (1980). The eddy viscosity Km is then determined on the basis
of the assumption that the turbulent Prandtl number is equal to 10 (Danabasoglu
et al. 2012). The latter assumption appears to be inspired solely on the basis of the
limited early observations of Peters, Gregg & Toole (1988) as reviewed in Large
et al. (1994).

Figures 10 and 11 show the variations of Prt = Km/Kρ as defined in (3.18) as
a function of Reb and Rib respectively. Similar to our argument for Kρ and thus
E , inspection of figures 10 and 11 suggests that Prt may be estimated, to first
order, solely on the basis of Reb for all types of mixing regimes. Prt decreases
monotonically with Reb as illustrated in figure 10. In the ‘molecular’ regime, since
the mixing efficiency and the scalar diffusivity approach zero while the momentum
diffusivity remains finite, Prt becomes extremely large of O(102). However, in
the ‘buoyancy-dominated’ regime, Prt decreases to O(100) after which its decrease
becomes modest such that in the ‘shear-dominated’ regime Prt may be approximated
by a value close to unity (Prt ≈ 0.8–1). While assuming Prt = 1 seems to be more
appropriate for the ‘shear-dominated’ mixing regime, the choice of Prt = 10 is likely
to be more relevant to the ‘molecular’ regime and values in between, 1 . Prt . 10,
are likely to belong to the ‘buoyancy-dominated’ regime. Unfortunately, the sensitivity
of the larger-scale numerical models to the choice of Prt has not been subjected to
detailed analysis. As such, it is unclear whether a more refined characterization of
Prt (e.g. based on molecular Pr or Rib) would be warranted at the current stage
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FIGURE 10. Variation of turbulent Prandtl number Prt = Km/Kρ with Reb = εk/νN2. Prt
has been calculated based on our proposed formulation in (3.18) for all of the DNS cases
investigated. For symbol conventions, refer to figure 3.

of large-scale model development. What is clearly evident, however, is that the
parameterizations embedded in larger scale numerical models should not simply rely
on the assumption of a constant value of Prt. They should instead attempt to identify
the relevant mixing regime and therefore employ a dynamic representation of Prt
based on Reb. Because the maximum Reb in oceanic flows extends to Reb = O(105),
further DNS analysis of weakly stratified turbulence will be necessary in order to
develop an appropriate parameterization for Prt.

5. Summary and conclusion
Diapycnal diffusivity, Kρ , is a means of characterizing the irreversible vertical

mixing of density-stratified turbulence and plays a crucial role in estimating the
amount of upwelling associated with the abyssal waters required for the closure
of the meridional overturning circulation of the oceans (Wunsch & Ferrari 2004).
Yet, it seems that unambiguous and accurate representations of this quantity
have not been employed in the subgrid-scale parameterizations embedded in the
large-scale circulation models of the oceans or for the purpose of interpreting oceanic
microstructure measurements. Rather, canonical models due to Osborn & Cox (1972)
or Osborn (1980) have been favoured for such purposes despite their well-established
limitations, apparently due to their simplicity. In this paper, we have reformulated the
diascalar representation of Kρ due to WD96 into a more familiar ‘Osborn-like’
expression (see (2.23)) which essentially inherits the simplicity of the Osborn
formula but avoids its limiting assumptions. The main difference however is that the
correct representation of instantaneous mixing efficiency, E , should replace the flux
Richardson number Rf in the Osborn formula. Such a slight modification accurately
distinguishes the irreversible process of mixing (at smallest scales) from the reversible
process of stirring (at larger scales) as required for a correct representation of Kρ .
Furthermore, the new formulation formally generalizes the length scale arguments of
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FIGURE 11. Similar to figure 10 but showing the variations of Prt with respect to
Rib =N2/S2.

Ivey & Imberger (1991) and implies on mathematical grounds that Kρ must depend
on Reb for a Boussinesq fluid at high Reynolds numbers.

Of equal importance for modelling purposes is an accurate representation of
turbulent momentum diffusivity Km (e.g. turbulence closure schemes in the Reynolds-
averaged Navier–Stokes (RANS) equations rely on Km as well as Kρ). This quantity
is commonly calculated based on estimations of Kρ and the turbulent Prandtl
number, Prt = Km/Kρ , which is occasionally assumed to be unity. Nonetheless,
reasonable definitions for Km and hence Prt which distinguish between reversible
and irreversible processes for any Boussinesq stratified fluid have apparently been
previously unavailable in the literature. Therefore we have notionally decomposed
the total shear production rate of TKE into reversible and irreversible components,
and have argued that only the ‘irreversible’ component should be employed in the
definition of Km (see (3.13)). We have defined this irreversible component to be
manifested at smallest scales in terms of the rate of energy dissipation from both
kinetic energy and available potentially energy reservoirs into the internal energy
of the flow. For an incompressible Boussinesq fluid, this notional description of
irreversible shear production can be interpreted as the sum of irreversible mixing and
viscous dissipation (see (3.10)). We have derived alternative but otherwise identical
formulae for Km in (3.16) and (3.17) after replacing the irreversible mixing term
(M ) by different expressions based on mixing efficiency or diapycnal diffusivity.
This result extended the previous homogeneous formulation of Venayagamoorthy &
Stretch (2010) to any general incompressible Boussinesq flow with high Reynolds
numbers. Similarly for Prt = Km/Kρ , an adequately precise formulation has been
proposed in (3.18).

In order to demonstrate the utility of the proposed formulations, we have employed
a large set of DNS analyses to simulate the evolution of a Kelvin–Helmholtz
instability and focused entirely on the three-dimensional turbulence that it engenders
once the nonlinear wave ‘breaks’. The DNS experiments include high initial Reynolds
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numbers (mostly at Re = 6000) and a wide range of minimum initial Richardson
numbers, Ri0, for fluids characterized by several different values of the molecular
Prandtl number Pr (mostly at Pr = 1, 8). The reported simulations represent an
unprecedented series of DNS runs in the literature of stratified turbulence due to
the computationally intensive requirements for such analyses. These requirements are
either imposed by the high resolution demands of high-Re and high-Pr simulations
or by the long-time integrations of low-Ri0 simulations. We have also commented
on the differences between the results we have obtained for turbulence generated by
the breaking Kelvin–Helmholtz wave process and those for an alternative common
configuration that has often been employed previously in investigations of stratified
turbulence, which is referred to as homogeneous stratified and sheared turbulence. In
those studies the background shear and stratification are forced to remain constant
throughout flow evolution and thus the BPE does not rise monotonically as a result
of irreversible mixing. Furthermore, by using the new formulation for Kρ , we have
proposed an expression in appendix A for calculating E in those studies instead
of Rf .

Our accurate calculations of Kρ have been compared with estimations based
on the Prandtl mixing length theory, and both the Osborn–Cox and the Osborn
formulae. Among these approximate models the Osborn–Cox formula was shown
to provide the closest estimates, which could be further improved by introducing
an ad hoc multiplicative factor of two. The major issue that arises by using a
conventional Reynolds decomposition for representing the perturbation density flux in
the mixing length model is that the irreversible representation of small-scale mixing
becomes entangled with the reversible contributions, thus rendering the resulting
estimates of diapycnal flux either negative on occasion or simply inaccurate. Even
after employing a triple Reynolds decomposition, although the density flux seems to
be positive-definite, the resulting diapycnal diffusivity systematically underestimates
Kρ which may suggest that the full diapycnal flux φd includes other irreversible
processes that are unaccounted for by the three-dimensional density flux alone.

Given the close similarity between our proposed expression for Kρ and that of
the Osborn formula, the main problem with the way that this expression is currently
being used relates to the assumption of a fixed mixing efficiency. This problem
becomes particularly obvious in the limit of either low or high values of stratification
(at a constant background shear) where the mixing efficiency is much lower than 0.2.
Of course, the second issue, whose adverse impacts on estimating Kρ are not as large,
concerns the fact that Rf contains an inaccurate representation of irreversible mixing
and thus leads to similar deficiencies, already mentioned for the mixing length model
(in which the turbulent density flux was employed in lieu of the diapycnal flux).
It is critical to emphasize that following the new formulation of Kρ , the stationary
assumption (among other assumptions) made by Osborn (1980) and also suggested
by SKIF (in their intermediate range of Reb to recover the Osborn predictions of Kρ)
is not required to arrive at a correct calculation of diapycnal diffusivity.

We have also investigated the dependence of Kρ , Km, E and Prt on the buoyancy
Reynolds number (a measure of turbulent intensity) defined as Reb = εk/(νN2) and
raised the question as to whether this single parameter is able to uniquely characterize
these important quantities. A compilation of all of our DNS data reinforces the
previous categorizations of turbulent mixing based on Reb as first suggested by SKIF.
Unlike SKIF, who force the background Richardson number to remain equal to its
initial value, in the KH ansatz this parameter is free to evolve as the shear and
density layers expand. Therefore in this context we have found that turbulent mixing
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may also be exclusively characterized by a measure of relative strength of the mean
flow stratification and mean flow shear as, for example, captured by the gradient
Richardson number, Rib (in a vertically averaged bulk sense), for high values of Reb,
implying a unique mapping between Rib and Reb.

The period of flow evolution in the KH ansatz upon which we have focused
begins with high values of Reb and continues with a gradual decay in turbulence
intensity (and thus Reb) until the molecular diffusion dominates and turbulence has
decayed. Within this period, Rib may either remain constant or increase depending
on the turbulent regime of mixing. High values of Reb & O(102) were only realized
in weakly stratified simulations with Rib . 0.2. On the other hand, the intermediate
range of Reb ≈O(101–102) occurred with Rib & 0.2. As a result, we have re-labelled
the ‘intermediate’ and ‘energetic’ regimes of mixing in SKIF as ‘buoyancy-dominated’
and ‘shear-dominated’ mixing regimes respectively, based on the dominance of density
stratification relative to velocity shear rather than the range of a single parameter (i.e.
Reb). It is interesting to note that, most recently in the laboratory experiments on
stratified turbulent shear flows down an inclined duct, Meyer & Linden (2014) have
also suggested a transition to a different regime of mixing at approximately Reb= 100
based on the length scales of the flow structures observed in their shadowgraph
images. In addition, evidence for a different regime beginning at Reb ∼ 100 has also
been found in isotropy statistics (Smyth & Moum 2000a) and in differential diffusion
studies (Smyth et al. 2005).

Despite the inherent differences between our DNS study of inhomogeneously
stratified shear-induced turbulence due to the breaking of a KH instability and the
more idealized simulations of homogeneously stratified and sheared turbulence in
SKIF (see appendix A regarding such differences), our figure 4 shares a striking
similarity with figure 1 of SKIF. Based on this similarity, we may conjecture that at
high Reynolds numbers, shear-driven stratified turbulence may be represented by a
universal characteristic behaviour regardless of the details of the route to turbulence.
This point must remain as a plausible speculation that deserves to be the subject of
further investigation.

In the ‘shear-dominated’ regime as the turbulence ages and hence its intensity
decays, mixing efficiency increases and concurrently Rib increases. These characteri-
stics are in contrast with those of the ‘buoyancy-dominated’ mixing in which the
mixing efficiency declines as turbulent intensity decays and moreover Rib stays
relatively constant throughout the turbulent phase. In fact a DNS run with a relatively
low Ri0 begins its turbulent phase in the ‘shear-dominated’ regime, in which the
mixing efficiency as well as Rib continue to rise secularly until the mixing regime
undergoes a transition at approximately Reb ∼ O(102) or Rib ∼ 0.2, after which the
irreversible mixing efficiency declines until the flow re-laminarizes while Rib stays
constant. Thus mixing efficiency varies non-monotonically with both Reb and Rib but
in distinctly different ways. Furthermore, based on our DNS results, we have argued
that to first order, both Kρ and E may be characterized by only a single parameter
(e.g. Reb). Because in the ‘shear-dominated’ regime, Reb and Rib seem to be closely
related, Rib could be equivalently employed for such a purpose in this regime only.

Insofar as the momentum diffusivity is concerned, Km varies monotonically with E
because Km ∝ 1/(1− E ), where 0 6 E 6 0.3 in most shear-stratified flows. Therefore,
so long as E is not close to unity, Km should be almost independent of the choice
of mixing efficiency (whether assumed constant or variable, or represented by E or
Rf ). In fact Km ≈ RebRib = εk/(νS2) seems to be a satisfactory approximation for the
entire range of Reb and for all the DNS cases studied herein. This may be contrasted
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to the delicate dependence of Kρ on E (i.e. Kρ ∝ E /(1− E )). The above conclusion
implies that the momentum diffusivity may be considered to be equivalent to the shear
Reynolds number, Km ≈ εk/(νS2), with the constant of proportionality being unity.

We have also shown that, to first order, Prt may be approximated solely by Reb
for all types of mixing regimes. Therefore, the range of Prt critically depends on the
mixing regime at which the turbulent is active. In the ‘molecular’ regime, Prt becomes
irrelevant since Kρ approaches zero. In the ‘buoyancy-dominated’ regime, Prt is in the
range Prt ≈ 1–5, while it asymptotes to Prt ≈ 0.8–1 for larger values of Reb in the
‘shear-dominated’ regime.
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Appendix A. A note on studies of homogeneous stratified turbulence
Idealized studies of turbulence in which the turbulent flow is assumed to be

homogeneous (Batchelor 1953), include sheared unstratified, stratified unsheared
and stratified sheared turbulent flows (see Holt, Koseff & Ferziger 1992 for a
review). In the case of homogeneous stratified and sheared turbulence, the background
stratification and shear are both forced to remain time-invariant throughout the course
of flow evolution. Here we intend to (i) clarify the relationship between the concept
of irreversible mixing which is associated with a rise in the BPE in more realistic
configurations and that in these idealized homogeneous studies, and furthermore (ii)
propose a formulation for mixing efficiency Eh which could be employed instead
of the flux Richardson number Rf , again in the context of homogeneous stratified
turbulence analyses.

It was noted in § 2.2 that for a closed system in which the mass flux across the
bounding surfaces is zero (for example by assuming a large enough control volume
which isolates the physical process that leads to turbulent mixing away from the
boundaries), the surface flux terms in (2.14) would vanish (i.e. Fadv = Fdiff = 0)
and therefore the BPE would increase monotonically in time as a consequence of
irreversible mixing. Nonetheless, in the studies of homogeneous stratified and sheared
turbulence, because the vertical boundary conditions are chosen to be shear-periodic
(Gerz, Schumann & Elghobashi 1989), the system is not closed and hence Fadv
and Fdiff are non-zero. In these studies (e.g. see Gerz et al. 1989; Holt et al. 1992;
SKIF), since the BPE is kept constant in time (i.e. dPB/dt= 0), (2.14) becomes,

Mh =Fadv +Fdiff −Dp. (A 1)

Note that the amount of irreversible mixing in these studies (denoted by Mh
above) cannot be obtained by computing dPB/dt, in contrast to the common practice
for realistic flows in which a global adiabatic rearrangement of the density field
(as described in Winters et al. 1995 and Caulfield & Peltier 2000) is required.
Alternatively, Mh should be either directly calculated as per its definition in (2.17) or
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inferred indirectly from (A 1). Either way, it remains unclear how irreversible mixing
Mh can be assumed to be simply equal to the buoyancy flux for the purposes of
calculating Kρ as in SKIF. In their DNS study of homogeneous stratified and sheared
turbulence, SKIF used the Prandtl mixing length model for calculating Kρ , thereby
implicitly assuming that the buoyancy flux is equivalent to irreversible mixing (or
likewise implicitly assuming that Rf is equivalent to E ), which necessarily resulted
in some negative values for Rf (see their figure 3).

Furthermore, in the same context of homogeneous stratified flows with a uniform
background density gradient, it was shown by Venayagamoorthy & Stretch (2006)
that the Osborn–Cox model (2.6) becomes equivalent to the exact formulation of
Winters–D’Asaro (2.7). Therefore on the basis of the analysis provided in § 2.3, these
models must also be equivalent to our newly proposed formulation in (2.23). Thus, it
is possible to infer the exact value of mixing efficiency indirectly by setting K̃cox

ρ = K̃∗ρ
which results in:

Γh = 1
RebPr

[
〈|∇θ ′|2〉
〈(dθ/dz)2〉

]
. (A 2)

Using (A 2), the accurate representation of mixing efficiency in homogeneous stratified
turbulence, Eh, may be found as Eh = Γh/(1 + Γh). In fact this definition of Eh was
motivated in Venayagamoorthy & Stretch (2010) (their equation (2.10)) based on the
original definition in Caulfield & Peltier (2000), although it is confusingly defined
as the flux Richardson number! It would be interesting nevertheless to compare Eh
with the common definition of Rf in the studies of homogeneous stratified turbulence
(e.g. in SKIF) to investigate their inherent distinctions because we expect that Rf
systematically underestimates Eh.

Appendix B. Bulk measures of the gradient Richardson number
The bulk measure of the gradient Richardson number, Rib, was introduced in (1.2)

and has been employed consistently throughout this paper. A more common definition
of this parameter in physical oceanography is, however, based on the vertical shear
being first averaged over the shear layer thickness before being squared and is denoted
as Ri†

b here. These two definitions are compared below:

Rib = g/ρ0〈dρ/dz〉
〈(du/dz)2〉 , (B 1)

Ri†
b =

g/ρ0〈dρ/dz〉δ
〈du/dz〉2δ

(B 2)

in which 〈f 〉 indicates vertical averaging over any arbitrary length scale while 〈f 〉δ
specifies vertical averaging over δ, the evolving thickness of the stratified shear layer.
This thickness is determined here as the difference between the highest and the lowest
vertical positions at which dρ/dz becomes greater than a threshold value of 10−3.
Furthermore, f denotes horizontal averaging. Note that (B 1) reproduces Rib in (1.2)
with N2 = g/ρ0〈dρ/dz〉 and S2 = 〈(du/dz)2〉.

The definition of Rib in (B 1) has been preferred in this manuscript over that
in (B 2) simply because it is consistent with the method that the volume average
of other quantities that involve a ratio, such as E , Kρ or Km, is implemented,
namely by averaging their numerator and denominator individually. However for
completeness, figure 12 illustrates the interdependence of Rib defined based on
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FIGURE 12. The interdependence of two vertically averaged bulk measures of the gradient
Richardson number Rib as computed based on (B 1) and (B 2) for all of the DNS cases
investigated. – –, Nonlinear least-squares fit.

either of the foregoing definitions in (B 1) and (B 2). The dashed line represents the
nonlinear least-squares fit which takes the following form:

Rib = 0.9Ri†
b

0.8+ Ri†
b

. (B 3)

The above relationship should serve as a transformation function to convert Ri†
b to

those that have been employed in generating figures 5(b), 7 and 11. It is worthwhile
mentioning that, at the moment, it is very difficult to estimate either Rib or Ri†

b in
both observations and large-scale general circulation models. This difficulty is indeed
due to their coarsely resolved velocity estimates as well as the inherent inability to
accurately measure the shear layer thickness.
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